当前位置:首页 / 基于竞争风险模型的急性脑梗死后癫痫发作危险因素分析及预测模型构建
论著 | 更新时间:2025-09-30
|
基于竞争风险模型的急性脑梗死后癫痫发作危险因素分析及预测模型构建
Analysis of risk factors and development of a prediction model for post-acute cerebral infarction seizures based on a competing risk model

内科 页码:386-393

作者机构:河南省濮阳市安阳地区医院神经内三科,安阳市 455000

DOI:10.16121/j.cnki.cn45-1347/r.2025.04.07

  • 中文简介
  • 英文简介
  • 参考文献

目的 探讨急性脑梗死(ACI)后并发癫痫的危险因素,构建并验证基于Fine-Gray竞争风险模型的临床预测模型。方法 采用回顾性队列研究设计,纳入2021年1月至2024年3月收治的580例ACI患者,随访1个月。以癫痫发作为目标事件,应用Fine-Gray竞争风险模型进行多因素分析。基于筛选出的独立危险因素构建列线图预测模型,采用C-index和校准曲线评估模型性能。结果 580例患者中,61例(10.52%)并发癫痫。Fine-Gray竞争风险模型多因素分析显示,皮质梗死(sHR=1.34,95%CI:1.07~1.68)、出血性转化(sHR=1.38,95%CI:1.11~1.72)、溶栓前美国国立卫生研究院卒中量表(NIHSS)评分高(sHR=1.37,95%CI:1.14~1.66)、心源性栓塞型(sHR=1.37,95%CI:1.06~1.78)及颈动脉循环受累(sHR=1.35,95%CI:1.09~1.66)是独立危险因素(均P<0.05)。预测模型的C-index为0.82(95%CI:0.79~0.86),校准曲线显示预测概率与实际风险高度一致。结论 基于竞争风险模型分析,皮质梗死、出血性转化、溶栓前NIHSS评分较高、TOAST分型为心源性栓塞型、颈动脉循环受累为ACI后并发癫痫的独立危险因素。以此为依据构建的列线图,可量化预测ACI后癫痫发生风险,且预测效能良好。

Objective To explore the risk factors for post-acute cerebral infarction (ACI) seizures and to develop and validate a clinical prediction model based on the Fine-Gray competing risk model. Methods A retrospective cohort study was conducted including 580 ACI patients admitted between January 2021 and March 2024, with a follow-up period of 1 month. Multivariate analysis was performed using the Fine-Gray competing risk model, with seizure as the event of interest. A nomogram prediction model was developed based on the identified independent risk factors, and model performance was evaluated using the C-index and calibration curve. Results Among the 580 patients, 61 (10.52%) developed seizures. Results of the multivariate analysis using the Fine-Gray competing risk model showed that cortical infarction (sHR=1.34, 95% CI: 1.07-1.68), hemorrhagic transformation (sHR=1.38, 95% CI: 1.11-1.72), high pre-thrombolysis National Institutes of Health stroke scale (NIHSS) score (sHR=1.37, 95% CI: 1.14-1.66), cardioembolic type (sHR=1.37, 95% CI: 1.06-1.78), and carotid circulation involvement (sHR=1.35, 95% CI: 1.09-1.66) were independent risk factors (all P<0.05). The C-index of the prediction model was 0.82 (95% CI: 0.79-0.86), and the calibration curve showed high consistency between predicted probabilities and actual risks. Conclusions Based on the competing risk model analysis, cortical infarction, hemorrhagic transformation, high pre-thrombolysis NIHSS score, TOAST classification of cardioembolic type, and carotid circulation involvement are independent risk factors for post-ACI seizures. The nomogram developed on the above factors can quantitatively predict the risk of post-ACI seizures with good predictive performance. 

96

浏览量

1

下载量

0

CSCD

工具集